
posits in the cooling chamber), ~ temperature difference between the central and bound- 
ary layers of the furnace-gas flow in the region of the outlet window, ~ Indices: i, j, 
r, zone numbers; dif, diffusional; nondif, nondiffusional; is, isotropic; anis, anisotropic; 
D, diffracted; inc, incident; G. Gas. 

1. 

2. 
3. 

4. 

. 

6. 

. 

. 

LITERATURE CITED 

A. G. Blokh, Thermal Radiation in Boiler Equipment [in Russian], Energiya, Leningrad 
(1967). 
V. A. Krivandin, Luminous Natural-Gas Flames [in Russian], Metallurgiya, Moscow (1973). 
D. Deirmendzhan, Scattering of Electromagnetic Radiation by Spherical Polydisperse Par- 
ticles [Russian translation], Mir, Moscow (1971). 
Yu. A. Zhuravlev, "Determining the characteristics of radiant heat transfer in multi- 
zone systems, taking account of isotropic scattering," Inzh.-Fiz. Zh., 31, No. 3, 463- 
470 (1976). 
Thermal Design of Boiler Apparatus (Normative Method) [in Russian], Energiya, Moscow 
(1973). 
Yu. A. Zhuravlev, "Development of a zonal mathematical model of heat transfer in fur- 
naces of boiler assemblies and investigation of its properties," Izv. Akad. Nauk SSSR, 
Energ. Transp., No. 6, 133-139 (1976). 
Yu. A. Zhuravlev, F. K. Sidorov, and M. Ya. Protsailo, "Application of zonal method for 
calculating the heat transfer in a boiler furnace," Teploenergetika, No. ii, 35-39 
(1980). 
A. G. Blokh and L. D. Burak, "Primary radiational characteristics of the principal 
ranks of solid fuel," Teploenergetika, No. 8, 48-53 (1973). 

REGULARIZATION IN THE PROBLEM OF DETERMINING 

EXTERNAL HEAT-TRANSFER CONDITIONS 

M. R. Romanovskii UDC 536.24:517.946 

Questions are considered of the accuracy in determining the heat-elimination co- 
efficient and the temperature of the environment by using the method of regu- 
larization according to the scheme of partial matching with elements of a set of 
observations. 

A characteristic feature of many experimental investigations is the complexity of ex- 
ecuting direct measurements of the desired quantities. Among such cases, for instance, is 
the known problem of determining the heat-transfer coefficient. Taking account of factors 
of nonstationarity of the process, nonlinearity of the thermophysical properties, and the 
spatial distribution of the heat complicates the application of traditional methods [1-3]. In 
this connection, methods based on the solution of the inverse heat-conduction problem are 
used to find the conditions for external heat exchange by means of measuring the temperature 
within the specimen in [4-7]. 

The problem of reproducing the cause according to the consequence being observed occurs 
constantly when studying the broadest class of phenomena. The isolation of inverse heat- 
conduction problems into a separate group and the development of a theory for identification 
of thermal processes [8, 9] is associated firstly with the complexity of obtaining final com- 
putational formulas since we only have available knowledge of certain model relationships 
implicitly expressing the connection between the temperature being observed and the parame- 
ters to be determined. 

On the basis of the fact that the temperature field is a result of the properties of the 
test object and the conditions of its interaction with the environment, such model parameters 
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are sought in inverse problems for which the temperature being observed and computed would be 
similar. In this case simplification of the model to obtain a computational dependence is 
not required and any known heat-transfer equations can be used that adequately describe the 
process being investigated. 

Therefore, known methods of determining the thermophysical parameters by carrying over 
the subject of investigation from explicit to implicit functional dependences between the de- 
sired and given quantities are substantially extended to the solutions of inverse problems. 
These functional dependences can be expressed by differential equations for which it is dif- 
ficult not only to obtain a final computational dependence but also an explicit analytical 
representation of the operator mapping the desired quantities on the set of initial data. 

Henceforth, assuming the conditions satisfied for conservation of the mutual one-to-one 
correspondence between the heat-transfer coefficient and the temperature of the environment 
on the one hand, and the temperature field on the other [i0], an investigation of questions 
of the stability and accuracy of determining the parameters of the thermal models by the meth- 
od of regularization [ii] by the scheme of partial matching with elements of the set of ob- 
servations [12] was continued in this paper. Let us note that other Tikhonov regularization 
schemes were proposed earlier in [13, 14] for the case under consideration when the operator 
of the inverse problem has no explicitly analytic representstiono 

Let us set up the problem of simultaneously determining the heat-transfer coefficient 
and the environment temperature by means of the boundary heat-transfer conditions for a rod 
with a heat-insulated lateral surface. In this case the following boundary-value problem 

cO - ~ + f ( x ,  t), O < x < l  O < t < T  
Ot Ox -~x 

uit=o=Uo(X), O < x < l ;  (1) 

a(ul~=o--UaO--L O--~u t =0 ,  O < t < T ;  
Ox x o  

Ou x=~ ~(ul~=~--Ua~ + ~--ffx-x = O, 0 < t <  T, 

can be the model, where the specific heat c, the density O, the heat conduction X, the volume 
source intensity f(x, t), and the initial distribution uo(x) are considered given, while the 
parameters a(t) and Uav(t) are to be determined. 

Two kinds of formulations of the inverse problems are used to take simultaneous account 
of the observations. In one it is required to give an additional boundary condition in the 
boundary-value problem, while in the other the discrete set of observations on the solution 
that satisfies the model selected is considered known. One of the possible modifications of 
the second formulation is used below. It is formulated as follows. 

It is required to find the vector a = {~, Uav} relative to which it is known that given 
observations u ~ containing the measurement interference s have the prototypes u, u ~ = u + e 
that satisfy the model (i) when its heat-transfer parameters are the desired quantities ~ = 
~, Uav = Uav. Relative to the experimental observations on the temperature field the sample 

u6 , 6 ~f=i.,z is considered given at m points of space and n times, which assures the identi- 

fiability of the desired heat-transfer conditions and has known estimates of the absolute mea- 
surement error 8 = {8~}i=T- ~- at each point of observation {xi}i~1.m. It is also assumed that 
the selected model adequately describes the process under investigation, while the initial 
data permits finding a unique and stable solution of the direct problem. In particular, this 
latter condition requires a priori assignment of the appropriate properties of the functions 
a(t) and Uav(t), for instance, their continuity. In the cases considered below these prop- 
erties are considered known but the absence of any other additional information in the form 
of monotoneity, convexity, sections, extremum points and their like is assumed, which could 
indicate beforehand the exact nature of the desired dependences. This expands the domain of 
allowable solutions of the inverse problem and results in less favorable conditions from the 
viewpoint of accuracy of the solution. It should be noted that such an expansion is charac- 
teristic for many inverse problems. 
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To solve the inverse problem formulated, we use the following regularization scheme 

T 

j' + (7- /  
0 (2) 

max lug - -  U~jl ~< 6i, i = 1, m, 

where u is the temperature field computed by means of given values of the model parameters, 
p and q are the orders of the stabilizing functional in each of the desired quantities, 8 i 
is the absolute measurement error, m is the number of points of observation, and T is the up- 
per bound of the observation time. 

The regularization method is selected in connection with the fact that it permits taking 
complete account of the main singularities in the inverse problems, which are expressed in 
the possibility of broadening the domain of admissible solutions and in the appearance of an 
instability in the solution. Let us note that the proposed regularization differs from ap- 
proaches that have been utilized extensively in inverse boundary-value problems [4, 8, 13]. 
In the formulation (2), only the ~p,q of the smoothing Tikhonov functional is minimized an- 
alogously to [ii], but matching to the errors of the initial data is performed for each in- 
dividual element of the set of observations. Consequently, there is no known scalar regu- 
larizationparameter in (2) [ii], and a requirement to obtain it in a certain set of measure- 
ment points {xi}~=F.-.- ~ is imposed on the sample of observations. That last condition also ex- 
presses the distinction between a regularization scheme of the form (2) and other known vari- 
ational schemes for solving incorrect problems [15, 16]. The separation of the samples into 
statistically independent groups required in (2) is, as is shown in [12, 17], an essential 
factor in the improvement of the accuracy of solving the inverse problem. Let us note that 
this question does not occur for the identification of one quantity, for instance, the bound- 
ary heat flux when knowledge of the observations at one point is sufficient. The passage to 
the identification of several parameters requires the knowledge of an appropriate number of 
additional observations. In this connection, the question of partial matching contains not 
only the singularity in the observations actually obtained, but also touches upon a general 
formulation of the problem. 

Turning to the numerical realization of the solution of the problem under consideration, 
we reduce it to a mathematical programming problem. To do this we approximate the desired 
functions by using cubic splines [18]: 

4 

pl t~ ~ t ~ "~; ~zui(t)= ]~ s2t__~+ ~ (t), ~z-~ 
i - - I  

(3) 
4 

U(l) S D(I)  av(t) = ~ 2 l+2N,+~ (t), ~ t _ ~ < t < ~ t ,  
i ~ l  

where  {Si}i=I,2CNI+N~+2 ) a re  c o e f f i c i e n t s  to  be d e t e r m i n e d ,  P i  (Z) and Qi ( l )  a r e  second  and t h i r d  

power p o l y n o m i a l s  a t  t he  a p p r o x i m a t i o n  no~es  {~z}l=0,-~ a n d  {@~}t=0--.~; Nt,z a r e  p a r a m e t e r s  of  the  

spline lattices setting up the number of approximation nodes. 

Local properties of the splines permit a satisfactory description of a broad class of 
dependences. The general requirement for their utilization is smoothness of the function be- 
ing represented. The desired coefficients {s i} for the splines are values of the function 
and its derivative at the approximation nodes. Use of the cubic splines allows evaluation 
of the stabilizing functionals ~p,q to third-order inclusive (p, q = 0.3). 

To solve the mathematical programming problem related to determining the coefficients of 
the approximation {si} , we use the penalty method. It consists of minimizing the function 

F 
f ~ l  l = /  ol_1 Tl-1  

550 



where yi---- max luii--uijl--Si is the residual in the matching conditions, K i are the penalty 

coefficients (K i >> 0, if Yi < 0 but K i = 0 if Yi~ 0). 

We shall seek the function u(x, t) satisfying the direct problem (i) for given coeffi- 
cients {si} by a finite-difference method with subsequent Bessel interpolation at intermedi- 
ate values of the mesh function found. 

On the basis of the above-mentioned method for determining the external heat-transfer 
conditions, we solve the following model problem. We assume the thermophysical properties 
of the rod to equal c9 = I, % = i, the initial distribution to be uo = i00, and the internal 
heat source has the power f(x, t) = x. Following [i0], in this case it can be proved that 
the heat-transfer parameters ~(t) and Uav(t) in the model (i) are identifiable in the large 
and the uniqueness of their determination is allowed. 

Let the desired quantities be described by the following functional dependences: vary- 
ing slightly in time 

I t+! = - -  , u a v ~  1 0 -  ( 4 )  

growing monotonically 

and unimodal 

= 3 0 0  s i n .  a t  - -  , Uav = 5 a r c t g  1 0 t  ( 5 )  
2 T  

= 300 - -  ( 7 t - -  3)% ~av = 2t exp ( - -20  + 1. (6) 

Using these values, we realize modeling of the observations according to the following law: 

~ ~(x~, t : ) §  i 1 m, j - :  l n, (7) Uij ~ ~ , , 

where u is the solution of the direct problem (I) for which values of ~ and Uav are given, 
and E is the interference of the observations. 

Measurement errors, inaccuracies in mounting the thermocouples, errors in modeling, and 
a number of other factors can be included in solving practical problems of the interference 
E. Taking them all into account considerably complicates the analysis of the properties of 
the solution of the inverse problem. Spending the main attention on methodological questions 
of selecting the stabilizing functionals, we restrict the assignment of the observation inter- 
ference to the form of white noise and system error. We determined values of the absolute 
measurement error from the formula 

1~j~n 

Executing the modeling of the observations, we find the heat-transfer parameters by con- 
sidering them smooth functions. The results of restoring the desired dependences of the form 
(4)-(6) by using the splines (3) are represented in the table, and some of them are shown in 
the figure. The upper bound of the observation time was taken at T = I. The measurement in- 
terference s was given with a normal distribution law and variance to which a relative mea- 
surement error of up to 3% corresponds. The sampling parameters had the value m = 2, n = I0. 
The approximation segment 0 <_t < T_was divided into five parts (N~,2 = 5), which assured ap- 
proximation of the functions ~ and Uav to an absolute accuracy not worse than 10 -I . The fi- 
nite-difference approximation of the thermal model to obtain observations (7) and solutions 
of the inverse problem does not vary, i.e., modeling errors are not taken into account. 

The results of the solution show that as the order of the stabilizer grows to the value 
p, q = 3, a continuous improvement occurs in the accuracy of the identification. The zeroth 
order of the stabilizer (p, q = O) in the case of the approximation under consideration by 
cubic splines here turns out to be inadequate to a satisfactory solution of the problem for- 
mulated. Using ~o.o results in significant errors in identification despite the stability of 
the solution and execution of the matching conditions in the observations Yi < 0. In combi- 
nation with the results of preceding investigations [12, 17], the results obtained indicate 
a tendency to magnification of the constraints to a degree governed by the order of the high- 
est stabilizer of the selected functional representation for the desired quantities. This 
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Fig. i. Determination of the heat transfer (a) and ambient 
temperature (b) of the form (6): i) exact value; 2) the 
model (8) ~3.3, 3) the model (i) ~3.3, 4) the model (i), ~o.o 
(a); i) exact value; 2) the model (i) ~3.3, 3) the model (8), 

~3.=, 4) the model (8) ~o.o. 

deduction shows the importance of exerting a sufficient degree of restraint on the domain of 
the allowable solutions. In the case of cubic splines such a constraint can be obtained by 
a stabilizing functional of third degree, which is related to the general properties of 
splines [18]. 

Comparing the results of determining the heat-transfer conditions of different nature, 
we turn attention to the growth of the error in identification in the restoration of depen- 
dences with a more complex nature. 

Of indubitable interest is a study of the properties of solutions of the inverse prob- 
lem when the level of the measurement interference increases. Let us execute an appropriate 
investigation by restoring a dependence of the form (6) and selecting the functional ~3.3 
among the stabilizers. Since the latter can later be recommended for the solution of prac- 
tical problems, we present its final form in the case of approximating the desired quantities 
by cubic splines: 

T~ sez-t --T z ~ s~ -- s2z+ ~ --Tz -F s2~+2 ~- 
l : t  

N= 36 2 -~- $2N172l+2 - -  s2N~-t-21+3 0s ~- $2P"~-'~2l+4/ " 

1=1 

Processing the results of an experiment which were modeled by (7), where g is interference 
with a normal distribution law and zero mathematical expectation, indicates satisfactory be- 
havior of the solution of the inverse problem in the formulation (2) with the rise of the in- 
terference variance in this case. If the relative measurement errors are 50%, the identifi- 
cation error is 4% for the heat transfer and 30% for the ambient temperature. These results 
show that the error in solving the inverse problem in the formulation (2) does not exceed the 
level of the measurement errors when the stabilizing functional is selected appropriately~ 

In addition to modeling interference in the form of white noise, the presence of system 
error must be taken into account. To study this question, we give the interference in (7) in 
the form of a displacement in the quantity s from the true temperature field u(x, t). In 
this case the solution of the inverse problem had an error to 3% for the heat transfer and 
15% for the ambient temperature upon achievement of a system error of the level of 10% of the 
running value. Let us note that in contrast to the interference with a normal distribution 
law, the'assignment of a system error in the case considered increases the growth in the er- 
ror of identification of the function Uav(t) with respect to the interference level. 

Now, let us examine the properties of regularization by the scheme (2) when the desired 
external heat-transfer parameters enter the heat-conduction equation. Let the following 
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model be considered 

cp O---t - - =  Ox - - ~ ( u - - u a ~ ,  O < x < l ,  O < t < T ;  

ult=o = Uo(X), O < x <  1; (8)  

u]x=o = ~o (t), ulx=l = ~,  (t), 0 < t < T.  

We v e r i f y  the  p r o p o s e d  method of  d e t e r m i n i n g  the  h e a t  t r a n s f e r  and ambien t  t e m p e r a t u r e  by the  
method e l u c i d a t e d  above ,  by c o n s i d e r i n g  the  t h e r m o p h y s i c a l  p r o p e r t i e s  to  depend on t he  tem- 
p e r a t u r e  (co = 1 + u, ~ = 1 + u ) ,  t h e  i n i t i a l  d i s t r i b u t i o n  and the  b o u n d a r y  c o n d i t i o n s  a r e  
c o n s t a n t  (uo = 100, ~0.1 = 100) ,  w h i l e  t he  d e s i r e d  q u a n t i t i e s  a r e  d e s c r i b e d  by dependences  o f  
the form (4)-(6). 

Errors in the solutions are presented in the table as a function of the degree of con- 
straint of the domain of allowable solutions. The results obtained in this case also indi- 
cate the necessity to magnify the constraints imposed on the domain of allowable solutions. 
The behavior of the solution as the variance in the measurement interference grows is analo- 
gous to the case considered above. 

Therefore, it is shown that for the simultaneous determination of the heat-transfer co- 
efficient and the ambient temperature, the application of the regularization method is effec- 
tive. Here the selection of an appropriate degree of constraint on the domain of allowable 
solutions of the problem under consideration is quite important. The results obtained indi- 
cate a tendency to magnification of the constraints to a degree governed by the order of the 
highest stabilizer of the chosen functional representation of the desired quantities. Utili- 
zation of the regularization scheme with partial matching by elements of the set of observa- 
tions permits execution of satisfactory identification in cases of increasing the variance of 
the interference. The practical value of the results obtained is in the development of a 
method to analyze the external heat transfer conditions by means of observations on the tem- 
perature within the body. 

NOTATION 

x, a space coordinate; t, time; u(x, t), temperature field; u, true state of the process 
under investigation; u 6, observation sample; 6, error in measurement; ~0~ , boundary tempera- 
tures; ~ heat-transfer coefficient; Uav, ambient temperature; ~p,q, stabilizing functional; 
p and q, its order; and F, penalty function. 
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SOLUTION OF THE HYPERBOLIC HEAT-CONDUCTION EQUATION 

BY EXPANSION IN A SMALL PARAMETER 

A. V. Finkel'shtein UDC 536.24.02 

A method of finding the solution of the hyperbolic heat-conduction equation as a 
power series of a small parameter (the relaxation time) is discussed. 

In the hyperbolic heat-conduction equation [i] 

02T a2T ( 1 ) OT + ~ = a 

Ow a~ 2 ax 2 

the relaxation time T r is small. For example in aluminum ~r = 10-11 sec. Hence, one can 
consider (i) as an equation of a small parameter s = Tr/To and use asymptotic methods for its 
analysis and solution [2, 3]. 

We consider (i) (written in dimensionless form) for the following initial and boundary 
conditions: 

T(z, 0)=0o(X), aT(x, 0) --0,(x), (2) 

~ .  a T ( ( i - - D 4  ~) + ( _  1)~ ~ T  ((i - -1 )  Z, ~) = ~(~),  i =  1, 2. (3) 
ax 

where depending on the type of boundary condition, the constants ~iI, Bi2 are either equal to 
zero or correspond to the appropriate thermal constants. 

Because (i) has the small parameter c as a coefficient of the higher-order derivative, 
a power series expansion of the solution in e must contain boundary-layer type terms depend- 
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